
Towards a Rigorous Software Architecture Documentation Process:
A Demonstration with the

Real-time Immersive Network Simulation Environment (RINSE)

Prof. Joseph R. Laracy
Dept. of Systematic Theology

Dept. of Mathematics & Computer Science
Seton Hall University

400 South Orange Avenue
South Orange, NJ 07079

USA
joseph.laracy@shu.edu

Russell Greenspan
CTO

PresenceLearning
 530 7th Avenue

Suite 407
New York, NY 10018

USA
russellgreenspan@gmail.com

Abstract
Despite numerous empirical studies and wide-spread, practical experience demonstrating the
importance of rigorous documentation in software engineering, many developers continue to
treat it as an “after thought.” Documentation, particular of software architecture, should be an
integral process of any development group, whether entrepreneurial, academic, or corporate. In
this article the authors develop and apply the software engineering principles of Len Bass, Paul
Clements, and Rick Kazman for software architecture documentation. The case study involves a
relatively large-scale, academic develop project aimed at supporting large-scale network
security preparedness and training exercises, involving hundreds of players and a modeled
network composed of hundreds of networks.

Keywords
Software Engineering, Software Architecture, Software Documentation, Simulation,
Information Security

I. Introduction

Motivation
Eoin Woods points out that “as software systems have evolved, so has software
architecture, with practices growing to meet each era’s new challenges.”[1, p. 94]The
distinguished software engineers, Len Bass, Paul Clements, and Rick Kazman make a
compelling case for the importance of high quality software architecture documentation.
They write,

As we have seen over and over, the software architecture for a system plays a central
role in system development and in the organization that produces it. The architecture

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 1

serves as the blueprint for both the system and the project developing it. It defines
the work assignments that must be carried out by design and implementation teams
and it is the primary carrier of system qualities such as performance, modifiability,
and security—none of which can be achieved without a unifying architectural vision.
Architecture is an artifact for early analysis to make sure that the design approach will
yield an acceptable system. Moreover, architecture holds the key to post-deployment
system understanding, maintenance, and mining efforts. In short, architecture is the
conceptual glue that holds every phase of the project together for all of its many
stakeholders. Documenting the architecture is the crowning step to crafting it[2, p.
201].

Building on the work of the aforementioned authors and others, in this paper we
demonstrate a powerful software architecture documentation technique using the RINSE
simulator.

Approach
Much of the information about the RINSE architecture gathered by the authors for this paper
was the result of conversations and data sharing with the researchers who developed the
system. Our software architecture documentation approach begins with the architectural
business cycle. We document important information on the stakeholders, the development
organization, the technical environment, and the architects’ experience. Next, we examine the
salient architecture information such as important classes and in this case, the distributed
denial of service attack scenario. After that, we present a number of architectural views, e.g.,
logical, module, component/connector, deployment, and implementation. Finally, we explore
key quality attributes such as performance (e.g., resource demand, resource management,
resource arbitration, traditional patterns, and custom patterns), and flexibility/extensibility. In
all our work, we attempt to apply and advance the seminal research of Bass et al. [2, Ch. 9].

Software Development Background
RINSE was developed “to support large-scale network security preparedness and training
exercises, involving hundreds of players and a modeled network composed of hundreds of
LANs.”[3, p. 119] The overall goal of the simulator is to present a realistic rendering of network
behavior as cyber-attacks are launched and security professionals diagnose incidents and
attempt to apply counter measures to maintain network services. Funding for this project came
from the US Department of Homeland Security. The team at the University of Illinois
successfully built a discrete event simulation system to simulate a terrorist cyber-attack on the
nation’s critical infrastructure. RINSE allows financial, power, and telecom institutions, both
public and private, to participate in “war games” to exercise their systems and command
ability.
The high level goal of RINSE is to develop a large-scale real-time network simulation system
that is highly extensible. Because of the number of players and duration of the game, hardware

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 2

redundancy and other fault protection techniques are employed. A variety of novel techniques
are employed in implementing RINSE. These include multi-resolution traffic modeling, new
routing simulation methods, and a latency absorption technique.

High Level System Description
There are a variety of methodologies available for modeling computer networks, ranging from
analytic tools to hardware emulation to simulation. Simulation has the advantage of offering
scalability and flexibility. Obviously, in a security scenario like cyber-attacks, it is preferable to
attack a simulated network rather than a real one.
RINSE has a variety of capabilities. Some capabilities which are common to other systems in this
domain area are parallel execution, discrete event models, and real-time support. RINSE is
different from similar systems in its employment of multi-resolution traffic models. These
models facilitate human/machine real-time interaction as well as increase efficiency for various
attack schemes.
RINSE can be divided into five major modules:
1) iSSFNet network simulator
2) Simulator Database Manager
3) SQL Database
4) Data Server
5) Network Viewer (clients)

iSSFNet Network Simulator
iSSFNet, formerly called DaSSFNet is a robust network simulator. It relies on the common API
for parallel simulation of networks, the Scalable Simulation Framework (SSF). The iSSF kernel,
which in many ways follows the standard kernel pattern handles support functions and
synchronization for iSSFNet. A summary of important classes is provided in a later
section.iSSFNet currently runs on the NCSA cluster. These parallel machines allow large
networks to be simulated in real-time. Distributed execution is supported by a composite
synchronous/asynchronous conservative synchronization mechanism.

Simulator Database Manager
The database management system connects directly to each machine in the simulator. It
transmits data from iSSFNet to the SQL database as well as control signals from the database to
the simulator.

Data Server
Client applications such as Network Viewer interact with the simulation through this
component. The Data Server provides monitoring and control capabilities to system

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 3

administrators playing the game. It also supports authentication for users, enables Network
Viewer to access recent changes to the database via XML-based remote procedure calls, and
transmits DML information about client networks.

Network Viewer
This Java based client application enables users to view their network during a scenario. When
Network Viewer polls the Data Server for data, the Data Server reads the database and returns
the requested information. “Super users” exist which manage the game and view the client
activity. They can use Network Viewer in addition to their special tool set which enables them
to inject surprises into the game.
A command prompt is also provided in Network Viewer which supports five types of
commands.

1. Attack - Super users initiate denial of service attacks with this command. The DDoS
scenario discussed later is an example.

2. Defense - System administrators may filter packets and employ other techniques to
protect their network.

3. Device Control - System administrators may reboot or disable network devices such as
routers.

4. Diagnostics - System administrators may assess their network health.

5. Simulator Data - Super users may control the simulator output or monitor a specific
element of the networks in the game.

Relevant Research
Much research has been conducted documenting the common themes and architectural
patterns within simulation modeling software. We used this research as a foundation to know
what to look for and what to expect in the RINSE architecture. As Gustavson et al. explain, most
of the patterns used are structure-oriented, allowing the ability and desire to create flexible
and reusable classes within the problem space[4].Neu and Russ explain that organizations often
face the same problems when designing their simulations. Because of this, static process
models can function as templates, later being molded into actual process descriptions.
Architectural patterns can help, such as “how to model or implement typical situations, e.g.,
how to handle resources, defects, etc.”[5, p. 3] To achieve reuse, the authors suggest
modularizing not only the code base, but also the models. Klein et al. describe an interesting
distinction between “static” and “dynamic” model elements. Static elements do not change as
the simulation executes, while dynamic elements have the potential to change. Dynamic input
parameters are received by the simulation at runtime from the sources involved in the
simulation[6].

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 4

II.Architectural Business Cycle (ABC)

Architect(s)

Architecture
Module Structure
Component-Connector Structure
Deployment Structure
Implementation Structure

Architects Influences

Stakeholders
US Department of Homeland Security
University of Illinois Coordinate Science Laboratory
Dartmouth College Institute for Security
Technology Studies
CS 527 Architectural Documentation Team

Developing Organization
Coordinated Science Laboratory, UIUC

Technical Environment
Discrete event simulation
High performance computing
Networking
Security

Architect’s Experience
Academic
Industrial

Requirements
(Qualities)
Performance
Fault Tolerance
Security

System
RINSE

FIGURE 1 Architectural Business Cycle Diagram

Stakeholders
RINSE is a continuation of projects funded by Defense Advanced Research Projects Agency
(DARPA) and the National Science Foundation (NSF). It was also sponsored by the US
Department of Homeland Security. The principal development organization is the University of
Illinois Coordinate Science Laboratory. The Dartmouth College Institute for Security Technology
Studies also contributed. The Architectural Documentation Team is a stakeholder as well.

Development Organization
The Coordinated Science Laboratory (CSL) team was led by Professor David Nicol. Nicol held the
following appointments at the University:

 Professor, Department of Electrical and Computer Engineering

 Affiliate Professor, Department of Computer Science

 Research Professor, Coordinated Science Laboratory

 Chair of the Computer Engineering Group, ECE department

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 5

His research interests are in the following areas:

 High Performance Computing

 Modeling and Simulation of Large-Scale Systems

 Networks

 Cyber-security
Professor Nicol was assisted by Dr. Michael Liljenstam, Post-Doctoral Research Associate in the
Center for Reliable and High-Performance Computing. Dr Liljenstam’s areas of expertise are
multi-resolution network modeling and simulation, cybersecurity: modeling internet worms,
and inter-domain routing analysis.
Dr. Jason (Xiaowen) Liu, Assistant Professor at the Colorado School of Mines, authored the iSSF
kernel while a UIUC graduate student. Graduate student Yougu Yuan architected the
framework of iSSFNet based on his experience on other SSF implementations, including the
precursor DaSSFNet. His focus was on making it more extensible to enable large-scale network
simulation. Graduate student Chris Grier, a security expert, assisted with the development of
the client side (JAVA) software. Research Programmer Lara Karbiner, a new member of the
team, came onboard to help regulate the development and testing.

Technical Environment
The RINSE development team was comprised of experts in the area of discrete event
simulation. Additionally, the UIUC team enjoyed expertise in high performance computing,
networking, security, and wireless systems. The Dartmouth ISTS group had expertise in security.
They developed the models and scenarios for various attacks.

Architects Experience
Professor Nicol’s experience:

 1975-1979 Carleton College , BA (math)

 1979-1982 Control Data Corporation, programmer/analyst

 1982-1985 Univ. of Virginia, MS, PhD (computer science)

 1985-1987 ICASE, Staff Scientist

 1987-1996 William and Mary, Assoc. Professor of CS

 1996-2003 Dartmouth, Professor of CS and Chair

 2002-2003 Assoc. Director ISTS

 2003-2003 Director ISTS

 2003-present UIUC, Professor of ECE

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 6

Professor Nicol’s vast experience in network simulation provides the “grand vision” for RINSE.
He was assisted in this regard by Dr. Liljenstam, an expert in multi-resolution network modeling
and simulation, cybersecurity: modeling internet worms, and inter-domain routing analysis. Mr.
Yuan architected RINSE based on his experience with earlier SSFNet systems. He started out
developing some packages of the Java SSFNet. While working on a related project, two other
students began developing a C++ implementation of SSFNet. The C++ implementation grew in
size and complexity and eventually became DaSSFNet. However, the DaSSFNet APIs lacked
extensibility for the new features they hoped to include. As a result, iSSFNet was built from
scratch using the lessons learned from DaSSFNet and other past experiences.

III.Architectural Information

Distributed Denial of Service Attack
The following informal use case is intended to give a software engineer trying to learn the
RINSE system an understanding of the important classes and their interaction in a particular
scenario corresponding to a well-known problem.DDoS, or a distributed denial of service attack
is a growing problem for large scale networks, including the internet.In a DDoS attack, the
attacker seeks to disable a servervictim through the exploitation of a computer network.First,
the attacker identifies a vulnerable server which becomes its agent.An example of an agent
could be an instant messaging server that has the IP addresses of a large number of machines
and can easily pass packets to these machines.The attack occurs when the attacker signals the
agent to command all its connected machines, or zombies, to bombard the server victim with
junk traffic.The volume of traffic is so large that the server victim can no longer provide its
services, whether it is POP3 email services or B2B e-commerce.

FIGURE 2 Distributed Denial of Service Attack Schematic

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 7

DDoS is one of the many scenarios that RINSE hopes to educated system administrators about
and prepare their networks against.The following command starts the simulation:

ddos_attack attacker server 100 2000

ddos_attack – the command
attacker – the attacker mentioned above
server – the server victim mentioned above
100 – duration of attack in seconds
2000 – rate of bombardment in kilobits/second

The simulation begins when the client sends the command (DDosCmd) and it makes its way to
the simulator.It goes through the following classes:

ViewerClient  DataServer  DBMonitor  WebServer
Finally, the command reaches the CmdProxy class and is broadcast to all the physical
simulators.There is one Country class associated with each physical simulator.Each Country
contains a ResolutionService class which tells the CmdProxy the location of the attacker, or it’s
Province.Every Country is made up of a connected graph of Province objects.

FIGURE 3 Command Proxy Class Diagram

The command is then passed to CmdHandler which communicates with the AuxiliaryOracle and
receives a pointer to the attacker within the attackerProvince.The Host contains at least one
NIC and a protocol graph.The protocol graph contains ProtocolSessions.The ProtocolSession
class represents a protocol layer on the ISO/OSI protocol stack. It's the base class for Protocol
implementations. The class specifies default mechanisms for how a protocol session should
behave. The data path is specified by two methods, push and pop, for receiving data from the
protocol session above and below. The data exchanged between protocol layers are
encapsulated in a ProtocolMessage object. The exchange of control messages between
adjacent protocol layers is implemented through invocations to the control method. Subclasses
may override these methods with specific behavior.ProtocolSessions include DDoS, TCP, ICMP,
IP, and others.

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 8

http://www.cs.dartmouth.edu/~yuanyg/iSSFNet/doc/html/classProtocolMessage.html

FIGURE 4 Command Handler Class Diagram
Packets are then generated with the following format and sent to the zombies.

FIGURE 5 Packet Format Diagram

The zombies then assault the server victim with the DDoS payload.
While the game is running, clients will periodically poll the database to analyze how their
network is performing.Each Province has a ReportManager which reports relevant statistics
such as bandwidth usage and processor utilization.Although most information is polled
periodically, some major events will alert the client through an event-driven interrupt.Because
of the enormous amount of data that will be collected after a week long war game with
hundreds of clients, the database cannot store all the information that should be analyzed in
the post-game stage.Therefore, a large log file is created to report the results.

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 9

Important Classes

Net
The Net class loads the configuration and instantiates the entire model . It reads in the
parameters from the passed-in DML branch and configures the hosts, routers, and links. After
the configuration, it then goes through the links and connects all the interfaces. Links for
subnets are also connected at this point. Once the configuration is finished, it then initializes
the traffic, nets, links, hosts and router objects.

Host
The Host class is derived from the ProtocolGraph class and includes support for the IP layer and
Network Interface Card (NIC). It instantiates its own timer object that is used at the time of
rebooting. In order to register itself, the Host object gets a pointer to the AuxiliaryOracle object
via the Province object. It then configures the resources of CPU and memory. For example, it
configures the number of instructions that a CPU would need for handling a packet. After
configuring the resources, it then configures the protocol sessions and interfaces.

Interface
The Interface class implements the default mac layer. It registers itself with the host-entity and
initializes all the protocol sessions. As part of its initialization of the given protocol session, it
finds out the class name for this protocol session, creates a new protocol session object, makes
it part of the protocol graph, and puts the protocol object in its vector. In case there are no
protocol sessions specified for an interface, it would then use the default protocol sessions at
both MAC and Physical layer.

Link
The Link class is responsible for resolving the NHI addresses and connecting the NIC to other
NICs on the same link. This connection is performed before the actual IP addresses have been
assigned to the interfaces.

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 10

Monitoring Possibilities

Cisco NetFlow Format
NetFlow data enables extensive near real time network monitoring capabilities. Flow-based
analysis techniques may be utilized to visualize traffic patterns associated with individual
routers and switches as well as on a network-wide basis (providing aggregate traffic or
application based views) to provide proactive problem detection, efficient troubleshooting, and
rapid problem resolution.

TCP Dump Format
It provides support for dumps of packet data in tcpdump format. The Instrumentation class is
used to monitor the internal state of one TCP session at one end of the connection and to write
data to a dumpfile.

Domain Modeling Language
DML is a language used to describe networks to be simulated in RINSE. Networks are described
as combinations (layers) of other networks or as a collection of devices such as routers,
switches, hosts, etc. Network administrators can describe their network topology using this
language and submit the DML to the RINSE team for integration into the game. DML is similar
to XML in that it has a simple syntax consisting of nested name-value pairs. In addition, DML
has features that allow nodes within the hierarchy to act as pointers to other nodes in the
hierarchy. For example, using the keyword "_extends", many nodes can point to one common
node.
To construct a Network in RINSE, DML is used as follows:

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 11

#======================
Network model
#======================
Net [
support interaction
support_interaction true

for pseudo dns
dns_entry [name alpha.aaa.com nhi 2]
dns_entry [name beta.ccc.edunhi 0:0]

subnet 0
Net [
id 0
_extends .dict.basicNet# use the entry in the dictionary
]

hosts in this level of Net
host [
id 2
get the graph data from the dictionary section
graph [_extends .dict.host_graph]
interface [id 0 _extends .dict.iface]
]

links in this level of Net
link [attach 2(0) attach 0:0(0) delay 0.2]
]

FIGURE6 Domain Modeling Language Example

For more information on DML, visit: http://www.ssfnet.org/SSFdocs/dmlReference.html

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 12

http://www.ssfnet.org/SSFdocs/dmlReference.html

IV.Architectural Views
As Bass, et. all, explain, views are probably the best way to convey a software’s architecture.
Views capture a structure, and “documenting an architecture is a matter of documenting the
relevant views.” [9] In essence, through graphical and annotative descriptions, views provide
cross-sections into thefundamentals of the software’s architecture.

Logical view

NETWORK-LEVEL CLASSES
iSSFNet tries to only leak a minimum of simulation details and present the normal users basic
units to build a network. The following classes should be conceptually familiar to most network
researchers:

Net
This class represents a network. It is composed of some smaller nets (subnets), hosts/routers,
and links.

Host

Source: http://www.cs.dartmouth.edu/~yuanyg/iSSFNet/doc/imgs/vhost.gif

FIGURE 7 Protocol Graph Diagram

Both hosts and routers are represented by this class. Each host is a ProtocolGraph with one or
more Interfaces.

Protocol Graph
Each protocol graph is composed of several ProtocolSessions such as IP, ICMP, etc.

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 13

http://www.cs.dartmouth.edu/~yuanyg/iSSFNet/doc/imgs/vhost.gif

Interface
This is the representation of a network interface card. It contains the MAC layer and physical
layer protocol sessions.

ProtocolSession
Each protocol session is a model of one particular protocol, e.g., TCP, IP, ICMP, etc.

Link
This represents a physical link that connects multiple network interface cards.

ProtocolMessage
Each protocol implements its own protocol header. It should be an extension of this base class.

Packet
This is the smallest data unit that is sent over a link. Usually it is composed by several
ProtocolMessages, just the same as in the real life.

SIMULATION-LEVEL CLASSES

Source:http://www.cs.dartmouth.edu/~yuanyg/iSSFNet/doc/imgs/infrastructure.gif

FIGURE 8 Infrastructure Diagram

As a simulator, classes other than the network-level ones are needed to glue them together and
provide essential simulated environment information. The main classes that accomplish this
task are as follows:

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 14

http://wiki.cs.uiuc.edu/cs427/SEARCH/ProtocolSession
http://www.cs.dartmouth.edu/~yuanyg/iSSFNet/doc/imgs/infrastructure.gif

Country
This is literally the main controller of the simulation. It instantiates HostEntities for each
physical machine that runs the simulation. It also instantiates ResolutionService that resolves
global information such as NHI to IP address mapping.

Province

Source:http://www.cs.dartmouth.edu/~yuanyg/iSSFNet/doc/imgs/province.gif

FIGURE 9 Province Diagram

Province is a container of hosts/routers. In iSSFNet design, it is equivalent to timeline or
alignment if the users are more familiar with the other terms. Each simulation may have one or
more Province instances. Each of them runs in its own timeline, which means in any given
moment, the simulated clock in different HostEntities won’t necessarily be the same. A
Province sits in the background and provides services such as current (simulated) time to the
hosts inside, it also provides means to distribute packets to hosts/routers in the other Province
instances. Moreover, it processes/distributes external user command received by the
CmdProxy to allow user interactions with a host, an interface, or a protocol session in the
simulator.

ResolutionService
Hosts or routers or a protocol session sometimes need to know information that is only
available globally. For example, an interface may want to get its own MAC/IP address assigned
given its NHI address, the user may want to know which Province contains a specific host, given
the host name, etc. such information is provided by the resolution service. In many cases, a
host may query such information indirectly using the AuxiliaryOracle.

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 15

http://www.cs.dartmouth.edu/~yuanyg/iSSFNet/doc/imgs/province.gif

AuxiliaryOracle
Each Province has its own AuxiliaryOracle. It can forward the queries on global information to
the ResolutionService, and it also provides local detail information within this Province. For
example, given a host NHI address, it can return the host pointer. The local information can
only be obtained by hosts or other objects within this Province.

CmdProxy
It opens sockets and process user commands, distribute the commands to the appropriate
Province, which further distribute the commands to Host, then to Interface or ProtocolSession.
The results of the commands go back using a similar path and are sent out by the CmdProxy.
With some change in the MACRO (remove -DUSE_CMD_SOCKET in the Makefile), it should be
able receive input from the keyboard instead of the socket.

Module View

SSF VIEW

FIGURE 10 SSF View Classes

Entity

Entity serves as the base class for all simulation components, such as hosts, routers, links, and
TCP sessions. It provides a container mechanism for defining alignment relations among a
model’s pieces. All such co-aligned entities interact through event exchange on channels which
is taken into account by the underlying simulator at the time ofmapping these entities to the
corresponding processors.

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 16

Event

Event is the base class for the quantum of information flowing over channels, such as the
protocol packets and timers.

Process

Process is the base class for describing an entity's behavior, such as the run-time behavior of
protocols. Each instance of a process is associated with an entity. This instance may wait for
input arriving on inchannels or wait for time to elapse. In addition, it may also wait on channels
of entities co-aligned with its owner.

inChannel, outChannel

These classes serve as the communication endpoints for event exchange, such as the protocol
interaction. Each instance of these classes belongs to a specific entity. They provide multicase
in-out and bus-style channel mappings. However, the outchannels have a transmission delay
associated with them.

LAYERED VIEW

FIGURE 11 Layer Diagram

The DML layer is responsible for the network configuration. It is a framework in itself that
accesses the configuration file semantics and its structure. Thus, it essentially acts as a data
source for the network models to be simulated. In a network environment, only the central
server needs to host this configuration file. All the clients simply retrieve their network model
data from this one location.

The SSFNet layer serves as the core layer that knows what objects to instantiate at what point
based on the data from the above-mentioned DML layer. It is responsible for the simulation of
domain internetworking that is accomplishedvia the important classes mentioned later in this
document.The SSF layer resides at the bottom of this layered architecture providing a generic
simulation framework that is applicable for almost all sorts of simulation. It provides some

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 17

http://wiki.cs.uiuc.edu/cs427/SEARCH/Event
http://wiki.cs.uiuc.edu/cs427/SEARCH/Process

fundamental objects from which specific simulations (such as iSSF Net itself) need to derive
classes to implement their corresponding functionalities.

Component/Connector view

MAIN VIEW
The following sequence diagram shows the interaction of objects at the time the main method
gets called during the load up of iSSF Net. At the time of startup, data is retrieved via the
dmlConfig object. From this point on, the core objects of Country and Net use this pointer back
to this DML configuration file to instantiate themselves and their corresponding objects:

FIGURE 12 iSSF Net Sequence Diagram

NET VIEW
The Net object is solely responsible for loading the whole network model and the associated
objects as depicted below. This loading requires the creation of the necessary network-support
objects of routers, interfaces, and links:

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 18

FIGURE 13 Net Sequence Diagram

NETWORK VIEWER/DATASERVER CONNECTOR VIEW

FIGURE 14 Network Viewer / DataServer Connector Diagram

The DataServer calls StartListening() and StartDBMonitoring() during initialization. At this point,
the DataServer is ready for Clients to connect. Clients then call StartListening() to begin listening
for messages from the server, then attach themselves to the DataServer via AttachClient(). The
Dataserver keeps track of all connected Clients, and as needed calls UpdateClient() on each
Client via RPC, passing whatever data needs to be sent.

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 19

Deployment View

FIGURE 15 Deployment View Diagram

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 20

Within the iSSFNet Simulator Node (lower level):

FIGURE 16 iSSFNet Simulator Node Diagram

Implementation View
This view provides information about the structure and contents of important source code
folders.

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 21

ATTACK
All the classes for the simulation of the DDoS attack scenario reside in this folder:
The DDoSSession class is the core class that is responsible for initialization and configuration of
the protocol session. It sets up the simulation timer and sets up protocol message and
command objects. The DDoSMessage and DDoSCmd classes work with the DDoSSession class to
communicate the commands for attack and report.

AUXILIARY
This folder contains the core classes of country, default auxiliary oracle, and resolution service:
The Country class instantiates the province, resolution service and command proxy objects. It is
also responsible for performing the pre and post configuration tasks.
The DefaultAuxOracle class registers all the hosts and interfaces. It also sets up the in and out
channels via which all the communication for a province occurs.

FLUID
This folder contains classes for handling fluid traffic at different network layers of IP and MAC.
The FluidHdrMessage object specifies a basic implementation of fluid transport protocol
message whereas the FluidAgentInPHY object defines a module at the physical layer to handle
fluid related data. Similarly, the FluidAgentInMAC object handles the fluid traffic at the MAC
layer. The FluidAgentInFilter object is responsible for processing an incoming packet. In case, it
is a fluid dataflow event, its resource utilization would need to be taken care of as well to get
around the fluid traffic loss. This would happen in case of CPU resource contention where the
submission rate for packets to the upper layers would be constrained.

INTERACT
This folder contains various kinds of classes responsible for handling different kinds of
commands, such as ping, ftp, shutdown, report, etc. The CmdProxy object makes sure that all
the in and out channels have been established. All the tasks of reading and writing a command
message get handled in this object. The CmdHandler object deals with the province and
auxiliary oracle to process the event queue containing command messages.

NET FOLDER
This folder contains the core SSFNet classes for modeling and simulation of network elements
of hosts, routers, network interfaces, and links. The configuration of arbitrarily complex
network topologies is also performed by the classes residing in this folder. For example, one of
the crucial task of this configuration involves the generation of traffic. In order to do this, the

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 22

http://wiki.cs.uiuc.edu/cs427/SEARCH/Auxiliary
http://wiki.cs.uiuc.edu/cs427/SEARCH/Fluid
http://wiki.cs.uiuc.edu/cs427/SEARCH/Interact
http://wiki.cs.uiuc.edu/cs427/SEARCH/Net+folder

framework utilizes the statistical algorithms for internet traffic, such as the poisson and poisson
pareto burst process algorithms.

OS
This folder contains the core SSFNet classes for modeling and simulation of network protocols,
protocol messages, and operating system components. The Dijkstra class contains the
implementation of the Dijkstra’s famous shortest path algorithm. Support for internet class
addresses has been provided via the Internet_Protocol class that implements the basic
functionality of the IPv4 addressing scheme. The protocol of policy aware on demand routing
has been utilized by the PAO_Routing class that helps the routers in deciding how to route the
network traffic.

SOSPF
Provides classes which together implement a model of the Open Shortest Path First version 2
protocol (limited static version). The Open Shortest Path First (OSPF) protocol is an IP link-state
routing protocol, recommended for distributing routing information among the routers in a
single autonomous system (AS), with explicit support for classless inter-domain routing (CIDR)
address allocation.

V.Quality Attributes

Performance

FIGURE 17 Performance Diagram

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 23

http://wiki.cs.uiuc.edu/cs427/SEARCH/sOSPF

Performance is one of the most important quality attributes in the RINSE application. As stated
earlier, previous SSF simulators existed with many of the same features as iSSFNet. However,
these versions could not provide the performance necessary to simulate hundreds of large
scale networks for many days. The RINSE team utilized a variety of architectural patterns and
other novel tactics to achieve high performance.
Bass, et. all, suggest that “the goal of performance tactics is to generate a response to an event
arriving at the system within some time constraint.”[2, p. 111] This definition is very applicable
to the iSSFNet system, a real time discrete event simulator. When events occur, they either
execute normally or are delayed and latency is adversely effected. The intelligent use of
hardware and software resources seeks to increase the amount of time in which events can be
handled normally and minimize “blocked time.” Resource availability hindered by failure or
contention for resources can be fatal problems when many events hit a particular resource
near simultaneously. The aforementioned problems can be dealt with looking at solutions in
three categories: Resource Demand, Resource Arbitration, and Resource Management.

RESOURCE DEMAND
The RINSE architecture regulates event frequency as well as the resource consumption of
individual events. This is accomplished through the use of algorithms and data structures which
support computational efficiency. Additionally, an effort is made to reduce computational
overhead through asynchronous parallel processing. Obviously, execution times and queue
sizes are well bounded to prevent overruns.
Simulating the mechanics of network traffic routing is a non-trivial activity. Brute force
implementations of routing information with n nodes requires O(n2) of memory. RINSE uses a
novel hierarchical addressing scheme (BGP) which only stores IP prefixes. This policy based
routing model permits on demand computation of routes. With the use of route aggregation,
preloaded, pre-computed forwarding tables can compute routes for background traffic and
other flows as required.

RESOURCE MANAGEMENT
Resource Management can be achieved by introducing concurrency, maintaining multiple
copies of data, and increasing available resources. RINSE uses all of these techniques to manage
resources. In the event that a hacker disables all or part of the RINSE network, a backup
network at another location will receive the current state of the mainline system and continue
the game. Increasing resources and concurrency are linked tactics. RINSE achieves them by
employing high performance RISC processors with large distributed memories in the NCSA
supercomputing cluster.
RINSE has also overcome some serious parallelization challenges. Normally, a global clock
object would exist to synchronize the various machines working in parallel. Currently, RINSE
runs on approximately 1500 processors. If a processor finishes its designated operation before
other collaborating processors, it must wait. This is clearly inefficient and undesirable. RINSE
has successfully implemented a scheme which involves local timers which run subsystems

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 24

asynchronously. If this were done “brute force,” it would be much harder, perhaps impossible,
to implement clever algorithms that simplify matrix mathematics for example. However, the
RINSE team has successfully implemented their asynchronous system. The details of the
implementation are beyond the scope of this documentation and likely not relevant to the
reader.

RESOURCE ARBITRATION
Scheduling is the result of conflicts over system resources.The architecture of RINSE employs a
variety of scheduling strategies to efficiently share resources.First, FIFO queues are used
throughout the system, notably in the model for network interface cards.FIFO queues have the
advantage of handling all resource request equally, scheduling events in order.Also, when there
are multiple priority queues, such as within one single queue, a FIFO policy is used.
Fixed priority scheduling is also utilized in RINSE.For example, when the SSFNet kernel is
handling an interaction or emulation task, current events are constrained by deadlines.In the
situation handling incoming events, some events need to be processed and incorporated into
the simulation immediately.Current work focuses on expanding the kernel to permit
differentiation between lower priority tasks, such as background traffic computation, and
higher priority tasks.Deadline monatomic strategies are also used in situations such as in
emulation mode.When a “real” packet is converted to a “virtual” packet, a deadline time is
imposed for delivery.Upon arrival at the simulated network card, the FIFO strategy can be
violated to allow the packet to take its place in the queue such that its deadline is not
compromised.

TRADITIONAL PATTERNS

Layers Pattern
The Layers pattern describes the situation where logical decompositions each perform a subset
of the total work, continuously passing responsibility down the chain until the operation is
completed.[2, p. 205] This pattern provides many benefits, including keeping dependencies
local to the individual layers, and this can be seen within the RINSE architecture.
RINSE employs a series of ProtocolSession layers, each representing a protocol layer in the
ISO/OSI protocol stack. When a ProtocolMessage is created, each ProtocolSession performs
whatever work it needs to, then calls ProtocolSession::push(msg) to push the message down to
the ProtocolSession in the next layer. When the message reaches the bottom and all work is
performed, each ProtocolSession can call ProtocolSession::pop(msg) to alert the
ProtocolSession in the layer above that the message has been processed by the lower layer and
should be bubbled back up.

Proxy Pattern
The intent of the proxy pattern is to “provide a surrogate or placeholder for another object to
control access to it.”[7, pp. 207–217]

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 25

Sourece: The DaSSF User’s Manual

FIGURE 18 Proxy Pattern Diagram

RINSE applies the solution found in the Proxy Pattern through the use of distributed
memory.Large multiprocessor architectures cannot be implemented with the traditional single
bus design.Bandwidth constraints limit the number of connected processors.In a distributed
memory configuration, each processor has its own cache which has its own associated
memory.However, the memories are connected through a network.

CUSTOM/FUTURE PATTERNS
By definition, a software design pattern is a time tested solution to a recurring design problem.
As a result of the research which developed iSSFNet, a variety of new solutions to recurring
problems in the network simulation domain have been developed. Strictly speaking, these are
not patterns yet because they have not had time to gain industrial approval. However, these
“patterns” are documented here in the spirit of sharing the knowledge.

Continuations Pattern
Summary: The Continuations Pattern is a new pattern developed to provide an efficient way to
save state information and reduce latency in network simulation.

Context: You are developing a discrete event simulation.

Problem: How do you model a delay in the system and advance simulation time without losing
state information?

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 26

Background:

FIGURE 19 Continuations Pattern Diagram

Suppose you have a graph of your network topology. The network is composed of devices with
well-defined interfaces. At time x in the simulation, a packet is injected into the network. At any
point in time, it occupies a specific position in the graph. Now the simulation time must
advanced to time x + Δt to accommodate another event, perhaps an additional packet.
However, if nothing is done, the current packet and the network state that was affected by it
will be lost.

Solution: The solution to this problem is to define a continuation object. The purpose of this
object is to store state information. Many times, the continuation object can just save a copy of
the packet. One should also define a Timer object that contains a member variable which
specifies how long of a delay should be modeled and encapsulates the continuation object.

Multiresolution Modeling Pattern
Summary: The Multiresolution Modeling Pattern is the principle technique that allows real time
simulation of large possible. The fundamental concept is to be able to simulate network activity
at different levels of detail depending on the particular needs of the particular scenario. This
enables execution time to be reduced by two orders of magnitude.

Context: (a) You are developing a discrete event simulation, or (b) You want to model a variety
of different situations, each requiring a different level of granularity.

Problem: How much should the process being simulated be discretized? Large granularity is
useless for some scenarios, while fine granularity is unnecessary for others and computationally
expensive.

Background: Suppose you are developing a simulator of computer networks. Depending on the
type of attack or defense that a simulating network is exposed to, different resolutions of traffic
modeling may be necessary. These vary from tracking at the individual packet level to observing
aggregate flows between sub-networks.

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 27

Solution: The solution to this problem is to adjust the level of detail with which traffic is
simulated:

Traffic that is “in focus,” what we call foreground traffic is simulated with high fidelity at
packet level detail. Traffic that represents “other things” going on in the network, i.e.,
background traffic, is abstracted using fluid modeling, either fine grained per-flow models,
or coarse time-scale periodic fixed point solutions.
Fluid modeling of network traffic is a technique with some history, and is being explored
also in other network simulators, such as MAYA, IP-TN, and HDCF-NS/pdns. The models
used in iSSFNet are based on our previous work to develop discrete-event fluid modeling
of TCP and hybrid traffic interaction models such that the packet and fluid representations
can coexist in the same simulation.[3, p. 6]

Multiresolution traffic modeling provides for speedups of two orders of magnitude. This
speedup facilitates the simulation of very large networks. The multiresolution configuration can
be viewed this way:

Level 1: Model individual packets - Discrete
Level 2: Raise level of abstraction and look at traffic as a fluid - Continuous
Level 3: Raise the level of abstraction again and look at aggregate communication between sub-
networks.

Each level reveals different information about the network under evaluation.

Flexibility/Extensibility

FIGURE 20 Flexibility / Extensibility Diagram
RINSE was designed with flexibility, extensibility, and scalability in mind. The architecture
needed to be intellectually accessible for new developers so that it could be improved in a
straightforward manner. It also needed to be able to scale to run on large hardware platforms,
such as over 1000 clustered high performance microprocessors.

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 28

In addition to the implementation of patterns, other techniques were employed to achieve this
quality attribute. First, the APIs were redesigned from DaSSFNet to be more user friendlyfor
new developers. Imposing additional structure does create more overhead, but the benefits
outweigh the small performance hit. Other changes improved performance though, such as
reducing the number of SSF channels. There is also additional support for emulation. Real time
interaction is facilitated by enabling interaction with the outside world. Despite all these
changes from the earlier SSF application, iSSFNet maintains backwards compatibility with old
DML network models still work.
Bass, et. all, describe general tactics for modifiability. RINSE utilizes the “maintain semantic
coherence,”“anticipate expected changes,” and “limit possible options” tactics to achieve
modifiability.[2, p. 107] “Semantic coherence refers to the relationships among responsibilities
in a module...The tactic of anticipating expected changes does not concern itself with
coherence of a modules responsibilities but rather minimizes the effects of the changes.”[2, pp.
106–107] In many ways, the SSF class of systems can be seen as a product line architecture.
“Modifications, especially within a product line, may be far ranging and hence affect many
modules. Restricting the possible options will reduce the effect of these modifications.”[2, p.
107]

TRADITIONAL PATTERNS

Command Pattern
The GoF Command Pattern shows how to separate a request from its execution, such that you
“encapsulate a request as an object, thereby allowing you to parameterize clients with different
requests, queue or log requests, and support undoable operations.”[7, p. 233] RINSE uses this
approach to implement the commands which clients input with the Network Viewer client and
send through the entire RINSE architecture. See the DDoS scenario in Section III to see how a
command object flows through the system.
In SSFNet, a DDOSCommand object contains the parameters for a request (the DDOS attack
source and destination addresses and the number of seconds between attacks), and the
realization of these requests occurs as the simulator creates DDOSMessages using the
parameters specified in the DDOSCommand object.

Strategy Pattern
The GoF strategy pattern’s intent is to “define a family of algorithms, encapsulate each one,
and make them interchangeable. Strategy lets the algorithm vary independently from clients
that use it.”[7, p. 315]

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 29

FIGURE 21 Strategy Pattern Diagram
In the example illustrated above as well as in many other instances, subclasses implement
various strategies for a super class.

Templates Pattern
The intent of the Gang of Four (GoF) template pattern is to “define the skeleton of an algorithm
in an operation, deferring some steps to subclasses. Template Method lets subclasses redefine
certain steps of an algorithm without changing the algorithm's structure.”[7, p. 325] This
pattern is used in iSSFNet through the employment of the standard template library iterators.
These iterators are used, for example, to iterate over nodes of topology objects.

WholePart Pattern
The Whole-Part pattern explains how to separate units into aggregate components, and the
inherent aggregation of a network fits this perfectly.[8, pp. 225–242]In this case we have the
Net class, which represents a network, containing Hosts, which are computers on the network,
containing Interfaces, which represent the network interfaces within a computer. Also note
that the Net class can consist of child Net classes (subnets), each with their own Hosts with
their own Interfaces.

CUSTOM/FUTURE PATTERNS

Fractal Design Pattern
Note: This pattern gets its name from fractals found in mathematics because they are defined
by self-similarity.
Summary: By structuring the simulation objects in a way similar to the real world objects under
investigation, domain experts can easily learn how the simulation works and extend it if they
wish.

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 30

http://wiki.cs.uiuc.edu/cs427/SEARCH/Rinse+WholePart+Pattern

Context: (a) You are developing a discrete event simulation, or (b) Other software engineers
who understand the class of systems that is being simulated but not simulation techniques
must modify or interact with your simulation.

Problem: How do you efficiently organize the simulation so that the engineers mentioned
above can quickly learn the system?

Background: Suppose you are developing a simulator of computer networks. You want
computer network experts to interact with your system and develop models to enhance it. The
network experts know nothing about discrete event simulation.

Solution: The solution to this problem is to structure your simulation software similar to the
structure of the system you are modeling. The classes in your simulation should be named after
the objects they are simulating. Therefore, if you understand the internet and computer
networks, you can understand the network simulation software. This concept is an extension of
the paradigm behind object oriented program which states that classes should be named after
the real world objects they control.

Subclass Creation Pattern

Summary: The RINSE designers have implemented an unusual process by which subclasses such
as Command, Protocol, and Session call associated register() functions, i.e., Command
subclasses call Cmds::registerCommand(), Protocol subclasses call Protocols::registerProtocol(),
Message subclasses call Messages::registerMessage(). The arguments to these functions are a
Constructor function pointer, a string identifying the Class name, and an integer identifying the
Class. These methods inject the constructor function pointer and the class name into a map;
then when the app needs to construct one of the subclasses, it calls an associated
newInstance() function to initialize the new class, i.e., Cmds::newInstance(string className) or
Protocols::newInstance(string className).

Context: You have multiple subclasses that the system needs to be aware of.

Problem: How do you keep track of the diverse subclasses when you need to know which actual
instance-type to instantiate?

Solution: Keep a map of all available subclasses. At runtime, have each subclass add itself to the
map so that the application can be aware of it and use it as needed.

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 31

6. Conclusion
RINSE is an outstanding example of a well architected software system. Through the use of
architectural patterns and other quality attribute focused tactics, the development team made
significant progress in furthering the areas of:

1) Multiresolution traffic modeling
2) Real-time interaction
3) Efficient routing simulation
4) High performance parallel simulation

The success of RINSE and specifically the iSSFNet component can easily be attributed to the
domain knowledge of the architects as well as expertise in object oriented design. This project
is an excellent case study in software architecture done properly in a research organization.

In this paper we have attempted to demonstrate a rigorous software architecture
documentation approach based on the principles explicated by Bass, Clements, and Kazman.
Our approach began with the architectural business cycle. We documented important
information on the stakeholders, the development organization, the technical environment,
and the architects’ experience. Later, we examined the salient architecture information such as
important classes and in this case, the distributed denial of service attack scenario. Next, we
presented a number of architectural views, e.g., logical, module, component/connector,
deployment, and implementation. To conclude, we explored key quality attributes such as
performance (e.g., resource demand, resource management, resource arbitration, traditional
patterns, and custom patterns), and flexibility/extensibility.

Acknowledgments
The authors are grateful for the guidance and wisdom of Ralph Johnson as well as the willing
participation of the RINSE development team.We also wish to acknowledge the significant
contributions of Adnan Zaman to this research.

Conflict of Interest
The authors declare no potential conflict of interests.

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 32

References
[1] E. Woods, “Software Architecture in a Changing World,” IEEE Software, vol. 33, no. 6, pp.

94–97, Nov. 2016.
[2] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd ed. New York:

Addison-Wesley Professional, 2003.
[3] M. Liljenstam, J. Liu, D. Nicol, Y. Yuan, G. Yan, and C. Grier, “RINSE: The Real-Time

Immersive Network Simulation Environment for Network Security Exercises,” in
Proceedings of the 19th Workshop on Principles of Advanced and Distributed Simulation,
Washington, DC, USA, 2005, pp. 119–128.

[4] P. Gustavson, K. L. Morse, R. Lutz, and S. Reichenthal, “Applying Design Patterns for
Enabling Simulation Interoperability,” presented at the Spring Simulation Interoperability
Workshop, 2004.

[5] H. Neu and I. Russ, “Reuse in Software Process Simulation Modeling,” presented at the
Software Process Simulation Modeling Workshop (ProSim 2003), Portland, OR, 2003.

[6] U. Klein, T. Schulze, and S. Strassburger, “Traffic simulation based on the High Level
Architecture,” in 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274),
1998, vol. 2, pp. 1095–1103.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, MA: Addison-Wesley Professional, 1994.

[8] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented
Software Architecture: A System of Patterns, vol. 1, 5 vols. New York: Wiley, 1996.

IJO -INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Volume 02 |Issue 12 | December 2019 www.ijojournal.com 33

	I. Introduction
	Motivation
	Approach
	Software Development Background
	High Level System Description
	iSSFNet Network Simulator
	Simulator Database Manager
	Data Server
	Network Viewer

	Relevant Research

	II.Architectural Business Cycle (ABC)
	Stakeholders
	Development Organization
	Technical Environment
	Architects Experience

	III.Architectural Information
	Distributed Denial of Service Attack
	Important Classes
	Net
	Host
	Interface
	Link

	Monitoring Possibilities
	Cisco NetFlow Format
	TCP Dump Format

	Domain Modeling Language

	IV.Architectural Views
	Logical view
	Network-level Classes
	Simulation-level classes

	Module View
	SSF View
	Layered View

	Component/Connector view
	Main View
	Net View
	Network Viewer/DataServer Connector View

	Deployment View
	Implementation View
	Attack
	Auxiliary
	Fluid
	Interact
	Net Folder
	OS
	sOSPF

	V.Quality Attributes
	Performance
	Resource Demand
	Resource Management
	Resource Arbitration
	Traditional Patterns
	Custom/Future Patterns

	Flexibility/Extensibility
	Traditional Patterns
	Custom/Future Patterns

	6. Conclusion
	References

